博客
关于我
Deep Learning---caffe模型参数量(weights)计算
阅读量:78 次
发布时间:2019-02-25

本文共 1173 字,大约阅读时间需要 3 分钟。

Draw_convnet

这里写图片描述

这幅图是通过开源的工具draw_convnet()生成的。在清楚整个前向计算网络中的每一个层的输入输出以及参数设置后可以自己手动画出计算图出来,对于参数量计算就很直观了。

feature map大小计算

输入:N0*C0*H0*W0 输出:N1*C1*H1*W1 输出的feature map大小: H1=(H0+2×pad−kernel_size) / stride+1 W1=(W0+2×pad−kernel_size) / stride+1 当输入的H0 == W0时,公式可以简化为:H1=W1=(h + 2xpad - kernel_size) / stride + 1注:当stride为1时,若pad=(kernel_size−1)  / 2,那么经过计算后的feature map大小不变

以LeNet-5为例

下面是一个多通道图像的输入LeNet-5网络前向计算模拟图:

LeNet-5

  • 网状立体格子表示kernel,其他颜色方图表示feature map(Input表示输入层,可以看做特殊的feature map)
  • 一个kernel对应一个feature map
  • 参数量主要为kernel大小
  • 每个kernel带一个bias

整个网络占据权重的为Convolution/Innerproduct 两层,分别计算参数量为,:

C1: 5 x 5 x 20 =  500,5x5卷积核, 20个feature map输出,20个kernelC2: 20x 5 x 5 x 50 = 25000 ,20维度输入,则20x5x5 kernel,50个feature map输出,即相当于20通道的图像输入,则需要20x5x5的kernel来卷积乘,50个这样的卷积核操作得到50个feature map,50个kernelF1: 50x4x4x500 = 400000,50维度特征图输入,全连接,每个点做卷积乘,则kernel大小为50x4x4,共500个feature map输出,500个kernelF2 : 500x1x1x10 = 5000,500维度特征图输入,全连接,kernel大小为500x1x1,共10个feature map输出,10个kernel

用4bytes的float类型来存储参数,则总的参数量大小为:

500 + 25000 + 400000 + 5000 + (20 + 50 + 500 + 10) =  431080

字节数为:

431080 x 4 = 1724320 ≈ 1683.90625kb ≈ 1.64M

对比实际LeNet-5网络基于caffe训练出来的模型大小为:1.64 MB (1,725,025 字节),基本接近,因为模型中可能还带有附加特性参数。

参考资料:

你可能感兴趣的文章
mysql数据库中的数据如何加密呢?mysql8.0自带新特性
查看>>
MySQL数据库优化
查看>>
MySQL数据库优化总结
查看>>
MySQL数据库入门看这一篇文章就够了
查看>>
Mysql数据库函数contac_函数:函数删除操作语法&使用例——《mysql 从入门到内卷再到入土》...
查看>>
mysql数据库命令备份还原
查看>>
mysql数据库基础教程
查看>>
MySQL数据库备份
查看>>
mysql数据库备份与恢复
查看>>
MySQL数据库备份实战
查看>>
Mysql数据库备份的问题:mysqldump: Got error: 1049: Unknown_无需整理
查看>>
mysql数据库如何重置密码是多少钱_MySQL数据库忘记root密码如何重置修改
查看>>
MySQL数据库安装配置与常用命令
查看>>
MySQL数据库实现主从同步数据
查看>>
mysql数据库导入导出_windows系统以及linux系统下的操作---linux工作笔记042
查看>>
mysql数据库导出导入
查看>>
MySQL数据库工具类之——DataTable批量加入MySQL数据库(Net版)
查看>>
mysql数据库常用命令
查看>>
MySQL数据库必会的增删查改操作(CRUD)
查看>>
MySQL数据库性能分析与调优实践
查看>>